ORNAMENTALS

Flooding and Trees

Trees differ markedly in their ability to withstand flooding. Some trees have mechanisms in place to provide oxygen to the roots of plants with water saturated soils and others do not. However, most trees will maintain health if flood waters recede in 7 days or less. It also helps if water is flowing rather than stagnant. If the roots of sensitive trees are flooded for long periods of time, damage will occur including leaf drop, iron chlorosis, leaf curl, branch dieback, and in some cases, tree death. Another danger of flooding is the deposition of sediment. An additional layer of silt 3 inches or more can also restrict oxygen to the roots. If possible, remove deep layers of sediment as soon as conditions permit. This is especially important for small or recently transplanted trees.

Try to avoid any additional stress to the trees this growing season. Ironically, one of the most important practices is to water trees if the weather turns dry. Flooding damages roots and therefore the root system is less efficient in making use of available soil water. Timely waterings are vital to a tree’s recovery. Also be diligent in removing dead or dying branches that may serve as an entry point for disease organisms or insect pests. The following information came from the US forest Service.

Trees Tolerant of Flooding: Can survive one growing season under flooded conditions. Red maple, silver maple, pecan, hackberry, persimmon, white ash, green ash, sweetgum, sycamore, eastern cottonwood, pin oak and bald cypress.

Trees Moderately Tolerant of Flooding: Can survive 30 consecutive days under flooded conditions. River birch, downy hawthorn, honeylocust, swamp white oak, southern red oak, bur oak, willow oak and American elm.

Trees Sensitive to Flooding: Unable to survive more than a few days of flooding during the growing season. Redbud, flowering dogwood, black walnut, red mulberry, most pines, white oak, blackjack oak, red oak and black oak. (Ward Upham)
PESTS

Cucumber Beetles and Bacterial Wilt

If you had cucumbers or muskmelons that suddenly turned brown and died last year, you may have had a disease known as bacterial wilt. The cucumber beetle carries this disease. Once a plant is infected, there is no cure, so prevention is the key. Because cucumber beetles overwinter as adults, early control measures are essential.

There are two types of cucumber beetles: striped and spotted. The striped cucumber beetle is the most common. The 1/4-inch-long beetles are conspicuously colored: black head and antennae, straw-yellow thorax, and yellowish wing covers with three distinct parallel and longitudinal black stripes. Young plants can be protected with row covers, cones, or other types of mechanical barriers. Edges must be sealed to ensure that the beetles do not find a place to enter.

Plants will eventually outgrow these barriers, or they will need to be removed to allow insect pollination of the flowers. Apply insecticides before beetles are noticed in the planting. Continue to spray weekly throughout the season.

Homeowners can use permethrin (Bonide Eight Vegetable, Fruit & Flower Concentrate and Hi Yield Lawn, Garden, Pet and Livestock Insect Control). Once plants have started flowering, spray in the evening after bees have returned to the hive. (Ward Upham)

Ladybird Beetles

Both the adults and the larvae of the ladybird beetle are beneficial and do not feed on plants but rather on other insects including aphids, mealybugs, whiteflies, scale insects and the eggs of various other insects. So if you see these insects, do not spray.

The larval form looks like a very small alligator-shaped insect. Larvae are covered with spines, about 3/8-inch long, and black with orange markings. (Ward Upham)

FLOWERS

Lots of Flowers, Lots of Seeds

I have never seen lilacs bloom like they did this year. Also, elms and maples have produced enormous amounts of seed in some areas. In certain cases, this has delayed leaf emergence, especially in the upper portions of the tree. Why did this happen? What triggered it?

We know that stress can cause trees and shrubs to put more energy into seed production. The strategy seems to produce lots of seed in case the...
“mother” plant dies. This large expenditure of energy means that there was less energy left over to push out leaves in the spring resulting in delayed leaf emergence.

So, let’s look at the likely cause. Remember the flowers and seeds that were produced this year came from buds that were produced last year during the growing season. Therefore, it was a stress that came last year that caused the problem. Actually, I think it was a stress from the Fall of 2017 through much of the Spring of 2018 that triggered the plants. In the Manhattan area, we had adequate rainfall through October of 2017, but then virtually nothing until May of 2018. This drought was severe enough that root systems were likely damaged so that even when rainfall returned, the plant was under moisture stress, especially in the upper portions of the tree. This stress, then, stimulated the plant to set an abnormally high number of fruit buds resulting in tremendous flowering and seed production this year.

What do we do about this? First, don’t assume a tree is dead if leaves don’t appear immediately. Also, don’t assume the top portion of the tree is dead if it is slower to leaf out than the lower portions of the tree. Give the tree a few more weeks and see what happens.

Next, these trees and shrubs don’t have a lot of energy reserves left so they need to be given extra care. Primarily this means watering as needed. Keep in mind that too much water is as bad as too little. Roots need to breathe; they need oxygen. With the excessive rains much of Kansas has received recently, it may be a while before watering needs to be done. Just don’t wait too long as the damaged root system will not be as efficient in taking up the water the plant needs. So when do you start watering? Use a screwdriver to try to penetrate the soil under the tree. If it is difficult to push the tang of the screwdriver into the soil, it is time to water. Water enough so that the soil is moist to a depth of one foot. Use a long-tanged screwdriver, a wooden dowel or a metal rod such as a section of rebar or electric fence post to test. It will stop when it hits dry soil.

(Ward Upham)

MISCELLANEOUS

Straw Bale Gardening

There has been growing interest in straw bale gardening. What better place to try this than in Kansas where straw is so abundant. First, some pointers.

- These are the “small” straw bales that are about 2 feet high and 3 feet long.
- Place the bale on edge so the twine doesn’t rot.
- Bales can be placed anywhere including concrete or asphalt. Just make sure there is plenty of sun and watering is convenient.

Bale Conditioning

- Water the bales and keep them wet for 3 days. The bale will start to heat up as it breaks down.
- On days 4, 5 and 6, sprinkle fertilizer on the top of each bale with 1 cup of ammonium sulfate (21-0-0) or ½ cup of urea (46-0-0). Water the fertilizer in. This speeds the decomposition process.
- On days 7, 8 and 9, continue to sprinkle fertilizer on each bale but cut the amount.
in half.

- Stop fertilizing on day 10 but keep the bale moist.
- Check for heat on the top of each bale for each day after day 10. When the temperature drops to below 100, the bale can be planted.

Planting

- Pocket Method: Make a hole for each plant several inches deep and fill with growing medium.
- Flat Bed Method: Cover the top of the bale with 3 to 4 inches of growing medium.
- The growing medium can be well-aged manure, compost or potting soil.

Number of Plants per Bale

- Cantaloupe: 2
- Cucumber: 3-4
- Peppers: 3-5
- Squash (winter): 2
- Squash (summer): 2-3
- Tomatoes: 2-3

Watering

Watering will be the most challenging aspect of management. The straw will dry quickly. A drip irrigation system on a timer can work well but may take some time to set up. Gardeners may also use soda bottles or milk jugs to water by poking drip holes in the lid, filling with water and then turning upside down next to the target plant.

This information was taken from an excellent publication from Washington State University that includes much more detail as well as images. (Ward Upham)

Useful Resource: K-State Extension Wildlife Management Web Site

Most people enjoy the wide variety of wildlife found in Kansas until that wildlife becomes a nuisance or damages property. Charlie Lee, K-State Wildlife Management Specialist, has put together a web site on wildlife management. Species covered include everything from bats to woodrats. Each species page also incorporates quick links for more in-depth information. One of our most common pest species, moles, includes videos on tracking an active tunnel and setting a mole trap.

This site is an excellent resource for the various options of dealing with our interactions with wildlife in a safe and effective manner. (Ward Upham)

Contributors: Ward Upham, Extension Associate
For questions or further information, contact: wupham@ksu.edu OR cdipman@ksu.edu
This newsletter is also available on the World Wide Web at:
http://hnr.k-state.edu/extension/info-center/newsletters/index.html
The web version includes color images that illustrate subjects discussed. To subscribe to this newsletter electronically, send an e-mail message to cdipman@ksu.edu or wupham@ksu.edu listing your e-mail address in the message.

Brand names appearing in this newsletter are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned.

K-State Research and Extension is committed to making its services, activities and programs accessible to all participants. If you have special requirements due to a physical, vision or hearing disability, or a dietary restriction please contact Extension Horticulture at (785) 532-6173.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service K-State Research and Extension is an equal opportunity employer. Issued in furtherance of Cooperative Extension Work, Acts of May 8 and June 30, 1914, as amended. Kansas State University, County Extension Councils, and United States Department of Agriculture Cooperating, Ernie Minton, Acting Dean.