Horticulture 2013 Newsletter
No. 23 June 11, 2013

Video of the Week: Succession Planting of Vegetables

UPCOMING EVENTS

NurseryWorks
For ornamental nursery crop growers and retail garden centers
July 17 & 18, 2013
Manhattan, KS
For more information, go to www.nurseryworks.weebly.com

Turf & Ornamentals Field Day
August 1, 2013
John Pair Horticulture Research Center, Wichita

TURFGRASS

Thatch Control in Warm-Season Lawns

Thatch control for cool-season lawn grasses such as bluegrass and tall fescue is usually done in the fall but now is the time we should perform this operation for warm-season turfgrasses such as bermudagrass and zoysiagrass. Because these operations thin the lawn, they should be performed when the lawn is in the best position to recover. For warm-season grasses that time is June through July. Buffalograss, our other common warm-season grass, normally does not need to be dethatched.

When thatch is less than one-half inch thick, it is not much of a concern; on the contrary, it may provide some protection to the crown (growing point) of the turfgrass. However, when thatch exceeds one-half inch in thickness, the lawn may start to deteriorate. Thatch is best kept in check by power-raking and/or core-aerating. If thatch is more than 3/4 inch thick, the lawn should be power-raked. Set the blades just deep enough to pull out the thatch. The lawn can be severely damaged by power-raking too deeply. In some cases, it may be easier to use a sod cutter to remove the existing sod and allow the grass to come back from rhizomes or start over with seed, sprigs or plugs.
If thatch is between one-half and a 3/4-inch thick, core-aeration is a better choice. The soil-moisture level is important to do a good job of core-aerating. It should be neither too wet nor too dry, and the soil should crumble fairly easily when worked between your fingers. Go over the lawn enough times so that the aeration holes are about 2 inches apart.

Excessive thatch accumulation can be prevented by not over-fertilizing with nitrogen. Frequent, light watering also encourages thatch. Water only when needed, and attempt to wet the entire root zone of the turf with each irrigation.

Finally, where thatch is excessive, control should be viewed as a long-term, integrated process (i.e., to include proper mowing, watering, and fertilizing) rather than a one-shot cure. One power-raking or core-aeration will seldom solve the problem. (Ward Upham)

VEGETABLES

New Potatoes

Many gardeners look forward to harvesting new potatoes this time of year. New potatoes are immature and about the size of walnuts. Dig entire plants and allow the skins of the exposed tubers to dry for several hours before harvesting. These young potatoes are very tender and prone to the skin “slipping” unless they are given a few hours to dry. Even then these immature potatoes will not store well. Red-skinned varieties are often preferred as they are the earliest to produce. (Ward Upham)

FLOWERS

Pinching Mums

Though cushion mums normally do not require pinching back, other garden types will benefit. Pinching is done by removing the top inch of growth by pinching it between your thumbnail and forefinger. Pinching encourages lateral buds to break and grow resulting in a shorter, sturdier and fuller plant. The first pinching is usually done when the mums reach six inches in height. A second pinching should be done when the new growth from the previous pinch reaches six to eight inches. Usually that is all we have time for because the last pinch should take place before July 15. Pinching later than that can delay flowering resulting in a shorter time of flowering before frost kills the blooms. (Ward Upham)
FRUIT

Fruit Reminders

* Remove fruit from heavily loaded apples and peaches (if they weren’t frozen out) to improve fruit size and prevent limbs from breaking. Apples should be spaced every 4 inches and peaches every 6 to 8. Note that is an average spacing. Two fruit can be closer together if the average is correct.

* Remove sucker growth from the base of fruit trees and grape vines.

* Remove water sprout growth from fruit trees. Water sprouts grow straight up.

* "Comb" new growth on grape vines so these new shoots hang down for greater exposure to sunlight.

* Continue disease and insect control to prevent fruit damage.

(Ward Upham)

PESTS

Ash Flower Gall

You may have noticed ugly, gall-like masses in ash trees. This is most likely the ash flower gall. As with most galls, the ash flower gall is unsightly but does not harm the health of the tree. Though most galls are caused by insects, this one is caused by an eriophyid mite, Eriophyes fraxinivorus.

These tiny mites (about 0.5 mm long) feed on the male flower clusters of ash early in the season, transforming the male flowers into irregular, fringed masses. These masses persist until the following spring and become more noticeable when the leaves drop in the fall. Masses start out green but turn black as they dry.

As mentioned, the ash flower gall is unsightly but does not harm the health of the tree. The mites are also difficult to control because they are able enter the flower bud before it is visibly open. Control measures are not recommended. (Ward Upham)
Bristly Rose Slug

This insect has been skeletonizing rose leaves in the Topeka area. This is not a caterpillar but is the larva of a sawfly. Close examination of this small (½ inch) larva will reveal very fine, hairlike spines in clusters.

Young larvae will remove the green layer of a leaf leaving behind a clear material. As the larvae mature, they make holes in the leaf and eventually may consume all of the leaf but the major veins.

Since these insects are not caterpillars (larvae of moths or butterflies), BT, found in Dipel and Thuricide will not be an effective treatment. However, a strong jet of water will dislodge the slugs and make it difficult for them to return to the plant. Other effective treatments include insecticidal soap, horticultural oils, spinosad (Fertilome Borer Bagworm, Leafminer and Tent Caterpillar Spray or Captain Jack’s Deadbug Brew) and permethrin (various trade names).

(Ward Upham)

Get Ready For Bagworms!

Although there is likely to be a delay in egg hatch due to the environmental conditions we have experienced this spring, it is time to get ready to deal with that “infamous” insect pest known as the bagworm (Thyridopteryx ephemeraeformis). Bagworms will eventually be out-and-about feeding on trees and shrubs, both broadleaf and evergreen. So, how can you alleviate the damage caused by bagworm caterpillars this year? You can initially start by “hand-picking” any bags formed last year, before the overwintering eggs hatch, and place them into a container of soapy water. This is very therapeutic and, if feasible, will quickly remove large populations before they cause significant plant damage. You may want to consider having a “bagworm hand-picking party” with prizes awarded to individuals that collect the most bags.

For those less interested in the pleasures of “hand-picking,” there are a number of insecticides labeled or registered for the control/suppression of bagworm populations including those with the following active ingredients (trade name in parentheses): acephate (Orthene), Bacillus thuringiensis subsp. kurstaki (Dipel/Thuricide), cyfluthrin (Tempo), lambda-cyhalothrin (Scimitar), trichlorfon (Dylox), indoxacarb (Provaunt), chlorantraniliprole (Acelepyrin), and spinosad (Conserve). Many of these active ingredients are commercially available and sold under different trade names or generic products.

However, several insecticides may not be directly available to homeowners. The key to
managing bagworms with insecticides is to make applications early and frequently enough in order to kill the highly susceptible young caterpillars that are feeding aggressively on plant foliage. Older caterpillars that develop later in the season, in the bags, may be 3/4-inches long, and are typically more difficult to kill. In addition, females tend to feed less as they prepare for reproduction, which reduces their susceptibility to spray applications and any residues. The bacterium Bacillus thuringiensis subsp. kurstaki is active on young caterpillars; however, the active ingredient must be consumed to be effective, so thorough coverage of all plant parts and frequent applications will be required to avoid having to deal with later stages. This compound is sensitive to ultra-violet light degradation and rainfall, which reduces any residual activity. Spinosad, which is the active ingredient in a number of homeowner products (including Borer, Bagworm, Tent Caterpillar & Leafminer Spray; Captain Jack’s DeadBug Brew; and Monterey Garden Insect Spray) works by contact and ingestion (stomach poison); however, it is most effective when ingested and it may be used against older or larger bagworm caterpillars. Cyfluthrin, lambda-cyhalothrin, trichlorfon, chlorantraniliprole, and indoxacarb may be used against both the young and the older caterpillars. However, again, thorough coverage of all plant parts, especially the tops of trees and shrubs, where bagworms commonly initiate feeding, and frequent applications are required. The reason why multiple applications will be needed when bagworms are first detected is because bagworms may “blow in” (called ‘ballooning’) from neighboring plants. If left unchecked, bagworms can cause significant damage, thus ruining the aesthetic quality of plants. In addition, they may actually kill plants, especially evergreens since they don’t usually produce another flush of growth, and newly transplanted small plants.

If you have any questions regarding the management of bagworms, contact your county horticultural agent or university-based or state extension entomologist. (Raymond Cloyd)

Contributors: Ray Cloyd, Entomologist; Ward Upham, Extension Associate

To view Upcoming Events: http://tinyurl.com/fswqe

The web version includes color images that illustrate subjects discussed. To subscribe to this newsletter electronically, send an e-mail message to cdipman@ksu.edu or wupham@ksu.edu listing your e-mail address in the message.

For questions or further information contact: wupham@ksu.edu

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned.

Knowledge for Life

Kansas State University Agricultural Experiment Station and Cooperative Extension Service