Horticulture 2012 Newsletter
No. 37 September 18, 2012

Video of the Week: Drying Flowers - Long Lasting and Colorful

UPCOMING EVENTS

Grape Growing Workshop

A Vineyard Workshop will be held on Monday, September 24th, hosted by Highland Community College in cooperation with K-State Research and Extension – Cowley County and Kansas Department of Agriculture. The workshop is free to the public and will run from 3:00-6:00 p.m. at the vineyard of Wheat State Wine Co. located at 23622 Springhill Farm Dr. in Winfield. Dominic Martin, HCC Vineyard Manager and Viticulture-Enology instructor will conduct the workshop discussing post-harvest vine care, formation of the periderm (bark) as winter approaches, winter kill prevention, spring planting preparation and more. To RSVP, please contact either Scott Kohl at HCC at 785-456-6006 skohl@highlandcc.edu or Cowley County Extension Agent Jill Zimmerman 620-221-5450 jazimmer@ksu.edu

Kansas Greenhouse Growers Educational Conference
October 25, 2012
For more information, go to http://www.hfrr.ksu.edu/doc3492.ashx

TURFGRASS

Lawn Seeding Deadline Nears

September is the best month to reseed cool-season lawns such as tall fescue and Kentucky bluegrass. However, you can get by with an early to mid-October planting for tall fescue. October 15 is generally considered the last day for safely planting or overseeding a tall fescue lawn in the fall. If you do attempt a late seeding, take special care not to allow plants to dry out.
Anything that slows growth will make it less likely that plants will mature enough to survive the winter. Seedings done after the cut-off date can be successful, but the success rate goes down the later the planting date. Late plantings that fail are usually not killed by cold temperatures but rather desiccation. The freezing and thawing of soils heave poorly rooted grass plants out of the ground, which then dry and die. Keeping plants watered will help maximize root growth before freezing weather arrives. (WU)

ORNAMENTALS

Planting Trees in the Fall

The fall season can be an excellent time to plant trees. During the spring, soils are cold and may be so wet that low oxygen levels inhibit root growth. The warm and moist soils associated with fall encourage root growth. Fall root growth means the tree becomes established well before a spring-planted tree and is better able to withstand summer stresses. However, certain trees do not produce significant root growth during the fall and are better planted in the spring. These include beech, birch, redbud, magnolia, tulip poplar, willow oak, scarlet oak, black oak, willows, and dogwood.

Fall-planted trees require some special care. Remember, that roots are actively growing even though the top is dormant. Make sure the soil stays moist but not soggy. This may require watering not only in the fall but also during the winter months if we experience warm spells that dry the soil. Mulch also is helpful because it minimizes moisture loss and slows the cooling of the soil so root growth continues as long as possible. Evergreens should be moved earlier in the fall than deciduous plants. They need at least six weeks before the ground freezes for the roots to become established. (WU)

FRUIT

Fruit Planting Preparation

If you plan to develop or add to your fruit garden next year, now is a good time to begin preparing the planting site. Grass areas should be tilled so grass does not compete with the fruit plants for soil moisture and nutrients. Have the soil analyzed for plant nutrients. Your local K-State Research and Extension agents have information to guide you in taking the soil sample. From that sample, the agent can provide recommendations on what and how much fertilizer to add to correct nutrient deficiencies. Organic materials
such as compost, grass clippings, leaves, hay, straw or dried manure, can be tilled into the soil to help improve its condition. Time and weather conditions generally are more suitable in the fall than in the late winter and spring for preparing soil. If fruit plants can be set by early April, they will have developed a stronger root system to support plant growth than they would if planted later. (WU)

FLOWERS

Amaryllis, Bringing it Back Into Bloom

With proper care, amaryllis will bloom year after year. Bring the pot in before the first frost and place in a dark location. Withhold water so leaves have a chance to dry completely. Then cut them off close to the top of the bulb. Amaryllis needs to rest for at least a month before the plant is started back into growth. It takes an additional six to eight weeks for the plant to flower.

When you are ready for amaryllis to resume growth, water thoroughly and place the plant in a warm, sunny location. Do not water again until the roots are well developed because bulb rot is a concern. Amaryllis needs temperatures between 50 and 60 degrees during the period before flowering. Higher temperatures can weaken leaves. The flower bud may start to appear right away or the plant may remain dormant for a period of time, but eventually all mature bulbs do bloom if they have been given proper care during the growing season. Keep the plant in a cool location and out of direct sunlight when the flower buds begin to show color so that the flowers last longer. Amaryllis can remain in bloom for about a month. (WU)

MISCELLANEOUS

Garlic Planting Time

October is a good time to plant garlic (Allium sativum) if you want large quality cloves next summer. Apply 3 pounds of 10-10-10 fertilizer per 100 square feet and mix into the soil before planting or fertilize according to soil test. Plant individual cloves point up and spaced 3 inches apart and 1 to 2 inches deep. The larger the clove planted, the larger the bulb at harvest. Water in well and mulch with straw to conserve soil warmth and encourage good establishment. Harvest will not occur until next summer when most of the foliage has browned.
Elephant garlic (Allium ampeloprasum) should also be planted now. It is a plant with a milder garlic flavor and is actually a closer relative to the leek than to true garlic. (WU)

Soil Tests and Plant Growth

Though soil tests are useful for identifying nutrient deficiencies as well as soil pH, they do not tell the whole story. We often receive soils from gardeners that are having a difficult time growing crops even though the soil test shows that nothing is deficient. Here are some factors that can affect plant growth that are not due to nutrient deficiencies or pH.

Too much phosphorus: Most Kansas soils are naturally low in phosphorus. However, soils that have been fertilized for a number of years may have phosphorus levels that are quite high. As a matter of fact, the majority of soil tests we receive show phosphorus levels in the "high" category. Too much phosphorus can interfere with the uptake of some micronutrients such as iron, manganese and zinc. High phosphorus soils should only be fertilized with fertilizers that have relatively low amounts of phosphorus.

Not enough sun: Plants need a certain minimum amount of sun before they will grow well. As a general rule, flowering (and fruiting) plants need at least 6 to 8 hours of full sun per day. There are, of course, exceptions such as impatiens that bloom well in shade. Move sun-loving plants out from the shade or use plants that are better adapted to shady conditions.

Poor soil physical characteristics: Roots need oxygen as much as they need water. A tight clay soil can restrict soil oxygen levels as well as make root penetration of the soil difficult. Increasing the organic matter content of clay soils can help break them up. Add a 2-inch layer of organic matter and till it in.

Walnut trees: Walnuts give off a natural herbicide that interferes with the growth of some plants such as tomatoes. Vegetable gardens should be at least 50 feet away from walnut trees if possible. For a listing of plants that are susceptible to walnut, go to: http://www.omafra.gov.on.ca/english/crops/facts/info_walnut_toxicity.htm

Tree roots: Trees not only compete with other plants for sun but also for water and nutrients. Extra water and nutrients may be needed.

Shallow soils: When new homes are built, the topsoil is often stripped off before the soils are brought to grade. Though the topsoil should be replaced, it sometimes is not or is not replaced to the same depth as it was originally. You are left with a subsoil that usually does not allow plants to grow well due to a lack of soil structure. Adding topsoil to a depth of 8 to 12 inches would be best but this often is not
practical. In such cases, try to rebuild structure by adding organic matter and working it into the soil.

Improper watering: Roots develop where conditions are best for growth. Shallow, frequent watering leads to roots developing primarily near the surface of the soil where the soil is moist. Such shallow root systems are easily damaged by heat and any interruption in the watering schedule. It is better to water less frequently and to a greater depth to encourage a deeper root system that is less sensitive to heat and water stress.

Watering during the evening can also be detrimental to plants if the irrigation wets the foliage. Many diseases are encouraged by free water on the leaves. Watering late in the day often will keep the foliage wet until dew forms. Dew will keep the foliage wet until it evaporates the next morning. It is better to water early in the morning so leaves do not stay wet as long. If you must water late in the day, use drip irrigation if practical (such as in a vegetable garden). (WU)

Contributors: Ward Upham, Extension

To view Upcoming Events: http://tinyurl.com/fswqe

The web version includes color images that illustrate subjects discussed. To subscribe to this newsletter electronically, send an e-mail message to cdipman@ksu.edu or wupham@ksu.edu listing your e-mail address in the message.

For questions or further information contact: wupham@ksu.edu

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned.

“Knowledge for Life”

Kansas State University Agricultural Experiment Station and Cooperative Extension Service