Video of the Week: Garlic, Easy to Grow and Share

ORNAMENTALS

Trees Dying after Heavy Rain

It would seem that after such a long and prolonged drought a heavy rain would be just what trees need. However, many trees have been under such great stress that any additional stress is enough for them to finally die. So how could a heavy rain be an additional stress?

Every living cell in a plant must have oxygen in order to survive. A heavy rain fills all the pores in the soil and drives all oxygen out. Some trees such as cottonwood and willow have the ability to get oxygen to the roots even in waterlogged soil, but most cannot. No oxygen in the soil means additional stress and the tree dies if the tree is already weak and/or the water stands long enough. Trees that have survived still need some extra care so they can rebuild their energy reserves. That means watering during dry weather and maybe some fertilization after leaf drop. For more information on fertilizing trees, see http://www.ksre.ksu.edu/library/hort2/mf2707.pdf . (WU)

Bark Splitting on Trees

Bark splitting is more common on thin-barked and newly planted trees. This year, we have noticed the condition primarily on maples. The most common cause of bark splitting is severe cold followed by rapid thawing during late winter to early spring. This year, it has been caused by dry weather followed by moisture. The dry weather slows growth and the return of moisture can result in a growth spurt that can split the bark. This damage is not limited to the trunk but can also occur on branches.
Healthy trees will be able to close the cracks in time with callus tissue. However, it is possible for disease organisms to enter the tree while the crack is open and cause decay. Therefore, the speed of covering over the wound is important. It would seem that painting and sealing the crack with paint, shellac or tar would help. However, research has shown that none of these tree wound dressings help and some may slow healing. What has been found to speed closure is to remove the wood near the edge of the crack. Use a sharp knife to trace ½ to 1 inch back form the edge of the split bark all the way around the wound (if possible). Remove the ½ to 1-inch wide bark strip from the edge of the wound. The goal is to remove bark no longer attached to the tree. Be sure to sterilize your knife with a 10% bleach/water solution or with a 70% alcohol solution between cuts. Remember to forgo wound dressings but leave the underlying wood bare. Fertilization in the spring or in the fall after leaf drop and watering during dry weather may speed healing. (WU)

PESTS

Twig Girdlers

We are starting to see damage from twig girdlers as evidenced by fallen twigs up to 3 feet long. The beetle Oncideres cingulata is most likely the culprit. Host trees include elm, oak, linden, hackberry, apple, pecan, persimmon, poplar, sour gum, honey locust, dogwood, and some flowering fruit trees. This insect is distributed throughout the eastern United States from New England to Florida and as far west as Kansas and Arizona. Adults are long-horned beetles with a grayish-brown bodies that are stout and cylindrical. The larvae are also cylindrical with small heads and shiny exteriors. Larvae can be up to an inch long and are light brown to brownish-gray.

Girdled twigs often remain on the tree until a strong wind blows them down. Large infestations can result in a high percentage of girdled twigs. Though this may reduce the vigor and appearance of the tree, the overall effect on the tree's health is not severe. Twigs are unsightly and do not fall all at once, so clean up is a drawn out process.

This beetle has a one-year life cycle. Late in the growing season, the female deposits eggs in small scars chewed through the bark and then chews a continuous notch around the twig, girdling it. The notch is cut below the site of egg deposition apparently because the larva is unable to complete development in the presence of large amounts of sap. Girdled twigs die and fall to the ground where the eggs hatch. Girdled twigs look like a beaver has chewed on them, only in miniature. The outside of the twig is smoothly cut, but the center of the twig appears broken. The larvae begin feeding on dead wood inside the twigs the following spring and continue through most of the summer. Pupation takes place inside the feeding cavity. Development is completed during August when the adult emerges to repeat the cycle. Though adults feed on the bark of host twigs, damage is minimal until the female starts girdling.
Chemical control is impractical, so gather and dispose of fallen twigs in the fall or spring to destroy the larvae inside. Often, natural mortality is high because fallen twigs are excessively dry or carry too many larvae per twig. (WU)

VEGETABLES

Harvesting Sweetpotatoes

Sweetpotatoes should be harvested no later than the first fall freeze because cold temperatures can damage the sensitive roots. However, you may want to harvest earlier if you prefer a smaller sweet potato. Test dig a hill to see if they are the size you want.

Sweetpotatoes should be cured after being dug. The digging process often damages the tender skin, and curing helps these small wounds heal. Place the roots in a warm, humid location for 5 to 10 days immediately after digging. A location with a temperature around 85 to 90 degrees is ideal. A space heater can be used to heat a small room or other area. Raise the humidity by placing moist towels in the room. The curing process not only heals wounds but also helps convert starches to sugars. This process improves the texture and flavor of the roots. Sweetpotatoes should be stored above 55 degrees. Storage at temperatures below that injures the roots, shortens storage life and gives them an off flavor. (WU)

FLOWERS

Reblooming Christmas and Thanksgiving Cacti,

Christmas Cactus (Schlumbergera bridgesii) and Thanksgiving Cactus (Schlumbergera truncate) are popular flowering holiday plants. Both are epiphytes native to the jungles of South America. Epiphytic plants grow on other plants and use them for support but not for nutrients. Though these cacti are different species, they will hybridize and produce varying stem shapes. Christmas cactus normally has smooth stem segments. Thanksgiving Cactus has hook-like appendages on each segment.

Flowering will not occur unless induced by temperature and light treatment. If the temperature is held at 50 to 55 degrees F, flowering will occur regardless of day length. But flowering usually is not uniform. Temperatures below 50 degrees F prevent flowering. Nights greater than 12 hours long
temperatures between 59 and 69 degrees also can generate flowers. Twenty-five consecutive long nights is enough for flower initiation. Nights will naturally become greater than 12 hours close to the fall equinox, which is on September 23 this year. A plant receiving natural sunlight but no artificial light during night hours, will have this 25-day requirement met about October 20. It takes an additional nine to 10 weeks for flowers to complete development and bloom.

Both of these cacti like bright indirect light. Too much sun may cause leaves to turn yellow. Common household temperatures are fine. Keep soil constantly moist but not waterlogged. These plants seem to flower best if kept a little pot bound. If you need to repot, try waiting until spring. (WU)

Reblooming Poinsettias

If you have saved last year's poinsettia and want it to flower again this year, you must follow certain procedures. Poinsettias are known as "short-day" plants. Growers found out long ago that poinsettias can be brought into bloom if they are given short days and long nights. Originally, it was thought that short-day plants needed a short duration of daylight in order to flower. Now we know that flower formation is actually triggered by long periods of uninterrupted darkness. For poinsettia, at least 12 hours of each 24 must be uninterrupted dark. Night temperature also has an effect and should be below 70 degrees F with 60 to 65 degrees F preferred.

During the day, place the plants in the sunniest location of the house. This high level of light is needed for the plants to have the energy required for good bract coloration. Day temperatures should range between 65 and 75 degrees F.

Providing uninterrupted darkness can be a problem for gardeners unless there is a room in which the lights are never turned on. If you don't have such a room, place your poinsettia in a dark closet or cover it with a cardboard box each night for the required 12 hours. If using a cardboard box, tape all the seams with duct tape to cut off any light. Poinsettia takes anywhere between eight and 11 weeks to flower once the dark treatment has been started. Normally, people start the dark treatment in early October. The first six weeks are critical. For every night you miss during the first six weeks, add two days to the bloom time.

After the six-week dark treatment, the buds have set and the dark treatment is no longer needed. (WU)

MISCELLANEOUS

Moving Houseplants Inside for the Winter

Many people with houseplants move some of them outside for the summer to give them better growing conditions and help them recover from the stress of
an indoor environment. But as fall approaches and night temperatures approach 50 F, it is time to think about bringing plants inside for the winter.

Plants that have spent the summer outside should be inspected for insects and disease before bringing them inside. A sharp spray from a garden hose can remove insects or mites from houseplant foliage. Insects in the potting soil can be forced out by soaking the pot in a tub of lukewarm water for about 15 minutes.

Houseplants that have been kept outdoors are accustomed to receiving much more sunlight than they do indoors. So how do we help houseplants acclimatize to the lower light levels inside? Houseplants brought in from outside should be started out in an area of the home that receives plenty of light, and then gradually moved to their permanent, darker location. This process should take four to eight weeks depending on the degree of difference in light levels between the initial and final location of the plant.

Understanding plant processes allows us to anticipate potential problems. Acclimatization gives houseplants a greater chance of retaining leaves and avoiding the stress of completely replacing them. (WU)

Adding Organic Materials Directly to the Garden

If the severe summer weather has brought an early end to your garden, consider adding organic materials directly to the soil rather than composting. Materials such as residue from lawn renovation, rotted hay, or rotted silage can be added and then tilled in. Coarser materials such as tree leaves or garden residue should be shredded. A lawn mower with a bagging attachment can be used to shred this material and collect it in one operation.

Organic materials can be spread to a depth of about 3 inches and tilled in. Be sure the soil is not too wet before tilling. During warm weather, the material will decompose quickly and the process can be repeated every two weeks. Later in the fall, it may take longer. This process can be repeated from now until late November to early December.

Remember that organic matter helps almost any soil. It improves clay soil by improving tilth, aeration and how quickly the soil takes up water. In sandy soils, it acts as a sponge by holding water and nutrients. (WU)

Ornamental Sweetpotatoes

We often receive the question as to whether ornamental sweetpotatoes are safe to eat. The answer is yes. Note that they are chosen for ornamental qualities rather than taste and so may not have the quality
of our traditional types. (WU)

Contributors: Ward Upham, Extension

To view Upcoming Events: http://tinyurl.com/fswqe

The web version includes color images that illustrate subjects discussed. To subscribe to this newsletter electronically, send an e-mail message to cdipman@ksu.edu or wupham@ksu.edu listing your e-mail address in the message.

For questions or further information contact: wupham@ksu.edu

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned.

“Knowledge for Life”

Kansas State University Agricultural Experiment Station and Cooperative Extension Service