Horticulture 2011 Newsletter
No. 50 December 13, 2011

Video of the Week: Decorating a Flower Pot for the Holidays

UPCOMING EVENTS

Great Plains Growers Conference January 5, 6 and 7, 2012
St. Joseph, MO
http://www.greatplainsgrowers.org/

Kansas Arborists Association Shade Tree Conference - January 11–13, 2012
Ramada – Downtown Topeka, KS

2012 Midwestern Chapter International Society of Arboriculture Conference and Trade Show
Arboriculture - Above and Beyond Just Trees
February 1-3rd, 2012
Doubletree in Corporate Woods Office Park.
www.mwisa.org

RetailWorks - February 17, 2012
Capitol Plaza Hotel, Topeka, KS

ORNAMENTALS

Controlling Volunteer Trees

Though trees are a vital part of our landscapes, there are situations where volunteer trees need to be controlled. This is often a case of the wrong plant in the wrong place. If the tree is a desirable species, you may want to consider transplanting in the spring. If it is not, active control measures would be in order.
Most trees resprout after cutting though some don’t. Cutting those that don’t resprout is an effective control method. For example, eastern redcedar is a very common species that will not resprout after cutting. Those that do resprout include Siberian elm, hackberry, osage orange (hedgeball), oak, ash, aspen, cottonwood, maple, sycamore, willow and many more. These trees will either need to be dug out or the cut stump treated with herbicide after cutting.

Note that when we say volunteer trees, we mean those that come from seed rather than suckers that come from the roots of an existing tree. The recommendations given in the remainder of this article are designed to kill these volunteer trees. Using herbicides on suckers will damage and very possibly kill the original tree. Trees that commonly produce suckers include tree of heaven, honeylocust, black locust, hackberry, western soapberry, cottonwood, aspen, poplar, willow and boxelder. It is also possible for larger trees of the same species to be root-grafted. Even though root-grafted trees are not suckers, they do share materials between the individual root systems and therefore herbicides used to treat one tree can be passed to its neighbor.

So let’s say we have a tree we want to control that is a volunteer and there are no other trees of the same species close enough to be root-grafted that we do not wish to harm. What do we do? If the tree is any size, you probably do not want to dig it out. That leaves using a herbicide on the cut stump. Basal treatments are also possible but that is beyond the scope of this article. First decide what herbicide to use. Triclopyr and glyphosate are the herbicides most commonly available to homeowners. Triclopyr is found in many brush killers and glyphosate is found in Roundup as well as numerous other products. Read the label before purchasing to make sure that a cut stump treatment is listed. Most often the undiluted product is applied to the stump immediately after cutting. A paint brush is often used for the application though some people will dip their pruning shears in the products immediately before cutting. Regardless, it is important that the stump is treated immediately or at least within 5 minutes. Note that a paint brush with foam rather than bristles is less likely to drip.

Trees do not need to be actively growing to be controlled. Actually this time of year is a very good time to treat as long as applications are not made when the temperature is below freezing. (WU)

FLOWERS

Care of Christmas and Thanksgiving Cacti

Christmas Cactus (Schlumbergera bridgesii) and Thanksgiving Cactus (Schlumbergera truncata) are epiphytes native to the jungles of South America. Epiphytic plants grow on other plants and use them for support but not for nutrients. Though these cacti are different species, they will hybridize and produce varying stem shapes. Christmas cactus normally has smooth stem segments, and Thanksgiving Cactus has hook-like appendages on each segment.
Both of these cacti prefer bright indirect light. Too much sun can result in the leaves turning yellow. Common household temperatures are fine. Soil should be kept constantly moist but not waterlogged. Give them a light fertilization every other week. Blooming will normally cease in late winter to early spring, but continue to keep them moist and fertilized until fall. During the fall, stop fertilizing, and give the plants only enough water so the stems do not shrivel in order to encourage flower bud formation. Though these plants seem to flower best if kept a little pot bound, flowers will diminish if they are too crowded. If you haven't repotted in several years, or if you notice a decrease in flowering from the previous year, move the plant to a larger pot in the spring. If possible, move the plants outside for the summer. Choose a shady spot because these plants will not tolerate full sun. Leave the plants outside until frost threatens.

Normally, the plants will have received enough cool nights in the 50- to 55-degree range that flower buds will have formed. However, if they haven't, subjecting the plants to nights greater than 12 hours long and temperatures between 59 and 69 degrees can also generate flowers. Twenty-five consecutive long nights is enough for flower initiation. Place the plants in an unused room or cover them with a dark cloth or cardboard box to insure that they receive uninterrupted darkness. After the flower buds have formed, it takes an additional nine to 10 weeks for flowers to complete development and bloom. (WU)

MISCELLANEOUS

Caffeine and Slugs

Many gardeners have heard of using beer to lure slugs to their death but now it appears we may have another weapon in our arsenal. Robert Hollingsworth of the USDA Agricultural Research Service (ARS) in Hilo, Hawaii was working with caffeine solutions that had shown promise in repelling frogs. They noticed that the 1- and 2-percent solutions also killed snails and slugs. Further research showed the 2-percent caffeine solution more effective than metaldehyde, a common pesticide used to control slugs and snails. It was also found that caffeine solutions with as little as 0.01 percent caffeine reduced feeding significantly on cabbage leaves dipped in the caffeine solution. Instant coffee is about 0.05 percent caffeine and brewed coffee is normally somewhat stronger. (WU)

Storing Pecans and Other Nuts

During the holiday season, pecans and other nuts are commonly given as gifts or purchased for holiday cooking. Nuts can quickly lose quality if not stored properly. Excessive water loss can lead to shriveled nutmeats, and the fats and oils in nuts can quickly spoil – developing an off-flavor or
rancid taste. Store shelled (or unshelled nuts) in the refrigerator, or preferably the freezer. Nuts quickly absorb flavors from other stored products, so store them in a tightly sealed container so they won’t lose water or absorb flavors from other fruits or vegetables. A solid plastic container with a tightly fitting lid is preferred. You can use a heavy grade resealable plastic bag as well. If nutmeats are tightly sealed, they can be stored in a freezer for up to one year, but using them within six months is preferred. (WU)

Ice Melters

There are five main materials that are used as chemical de-icers: calcium chloride, sodium chloride (table salt), potassium chloride, urea, and calcium magnesium acetate. Calcium chloride is the traditional ice-melting product. Though it will melt ice to about -25 degrees F, it will form slippery, slimy surfaces on concrete and other hard surfaces. Plants are not likely to be harmed unless excessive amounts are used.

Rock salt is sodium chloride and is the least expensive material available. It is effective to approximately 12 degrees F but can damage soils, plants and metals. Potassium chloride can also cause serious plant injury when washed or splashed on foliage. Both calcium chloride and potassium chloride can damage roots of plants.

Urea (carbonyl diamide) is a fertilizer that is sometimes used to melt ice. Though it is only about 10% as corrosive as sodium chloride, it can contaminate ground and surface water with nitrates. Urea is effective to about 21 degrees F.

Calcium magnesium acetate (CMA), a newer product, is made from dolomitic limestone and acetic acid (the principal compound of vinegar). CMA works differently than the other materials in that it does not form a brine like salt but rather helps prevent snow particles from sticking to each other or the road surface. It has little effect on plant growth or concrete surfaces. Performance decreases below 20 degrees F.

Limited use of any of these products should cause little injury. Problems accumulate when they are used excessively and there is not adequate rainfall to wash or leach the material from the area. Since limited use is recommended it is best to remove the ice and snow by hand when possible. When they are applied, practice moderation. Resist the temptation to over apply just to make sure the ice and snow melts. Keep in mind this can damage concrete surfaces as well as the plants and grass growing along the walks and driveways. These problems are normally latent and do not show up until spring or summer. (WU)

Contributors: Ward Upham, Extension Associate

To view Upcoming Events: http://tinyurl.com/fswqe
For questions or further information contact: wupham@ksu.edu

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned.

“Knowledge for Life”

Kansas State University Agricultural Experiment Station and Cooperative Extension Service