Blueberries in Containers

There has been increasing interest recently in growing blueberries in containers. The varieties chosen for this are usually half-high plants that are the result of a cross between highbush and lowbush blueberry species. Such plants can be as small as 18 inches high and wide (Top Hat) but are more commonly larger. Though this can be successful there are several things to keep in mind.

Acid Soil pH: Blueberries need an acid pH between 4.8 and 5.2. Sphagnum peat moss is very acid and is often used in large quantities in soil mixes for acid-loving plants. As a matter of fact, blueberries can be grown in peat moss alone if nutrients are provided. However, I would suggest using a 50/50 mix of peat moss and potting soil. This will provide nutrients as well as some weight so the plant is less likely to blow over in wind.

Size of Container: Though containers as small as 2 gallons can be used on half-high blueberries, a larger container would be advised as they will be more stable in the wind and provide a larger moisture reserve during hot, dry weather.

Watering: Blueberries do not have root hairs and therefore are not very efficient in picking up water. Potting soil needs to be kept moist.

Winter Care: Though the top growth of these plants are very winter hardy, the roots are not. Either move the pots into an unheated, attached garage or bury the pot in the soil or with mulch in early November. Periodic watering during the winter will be needed.

Varieties: Though blueberries will produce some fruit if only a single variety is grown, two varieties will increase the potential fruit crop. Suggested varieties would include Top Hat and
Northsky. Each should reach about 18" high though Northsky will likely grow wider than Top Hat. Northblue is another possible choice that should produce more fruit than either Top Hat or Northsky but would reach 2 to 3 feet in height. Finally, North Country is intermediate in size at 18 to 24 inches high and also would be intermediate in the amount of fruit produced.

Protection from the Wind: Wind protection will decrease the amount of water these plants need and reduce the chances of leaf scorch.

Exposure: Blueberries do best with a minimum of 6 to 8 hours of sunlight a day. Try a northern or eastern exposure. (WU)

Strawberry Planting and Mulch Removal

New strawberry plantings should be set early in the growing season so that mother plants become established while the weather is still cool. The mother plants develop a strong root system during this cool period when soil temperatures are between 65 and 80 degrees F. The most appropriate planting time is mid- to late March in southern Kansas and late March to mid-April in the northern areas of the state.

Later in the season, runners and daughter plants develop. The earlier the mother plants are set, the sooner the first daughter plant will be formed and take root. These first daughter plants will be the largest plants at the end of the growing season and will bear more berries per plant the following spring.

When planting is done later, the higher temperatures stress the mother plants resulting in reduced growth, weaker mother plants and delays in daughter plant formation. Fewer and smaller daughter plants produce fewer berries, resulting in a smaller crop.

Remove all flowers during the first year. New plants have limited energy reserves that need to go toward establishing the mother plants and making runners rather than making fruit. If fruit is allowed to develop the first year, the amount of fruit produced the second year is drastically reduced due to smaller, weaker daughter plants.

Research in Illinois has shown that the straw mulch should be removed from strawberry plants when the soil temperature is about 40 degrees F. Fruit production drops if the mulch remains as the soil temperature increases. There are likely to be freezing temperatures that will injure or kill blossoms, so keep the mulch between rows to conveniently recover the berries when freezing temperatures are predicted. (WU)
VEGETABLES

Time to Plant Potatoes Approaching

St. Patrick’s Day is just around the corner, so we know it is time to get seed potatoes in the ground. Actually any time from mid- to late-March is fine for potato planting. Be sure to buy seed potatoes rather than using those bought for cooking. Seed potatoes are certified disease free and have plenty of starch to sprout as quickly as soil temperatures allow. Most seed potatoes can be cut into four pieces, though large potatoes may yield more, and small less. Each seed piece should be between 1.5 and 2 ounces to insure there is enough energy for germination. Each pound of potatoes should yield 8 to 10 seed pieces.

Cut the seed 2 to 3 days before planting so freshly cut surfaces have a chance to suberize, or toughen, and form a protective coating. Storing seed in a warm location during suberization will speed the process. Plant each seed piece about 1 to 2 inches deep and 8 to 12 inches apart in rows. Though it is important to plant potatoes in March, emergence is slow. It is often mid to late April before new plants poke their way through the soil. As the potatoes grow, pull soil up to the base of the plants. New potatoes are borne above the planted seed piece, and we don’t want sunlight hitting the new potatoes. Exposed potatoes will turn green and produce a poisonous substance called solanine. Keeping the potatoes covered will prevent this. (WU)

Bolting and Buttoning in Cole Crop Plants

Broccoli, cabbage and cauliflower are cole crops that have a tendency to bolt (go to seed) or button (produce an extremely small head) if plants are not grown properly. These crops need to be kept actively growing through their production cycle. If they slow down due to underfertilization or are stunted due to overgrowing their container, buttoning or bolting is more likely. If you are not growing your own but rather selecting plants from a retailer, choose small, stocky dark green plants. Even after transplanting, these plants need to be well-fertilized. Fertilize at transplanting with a starter solution and continue to fertilize every 2 to 3 weeks until harvest. Both buttoning and bolting are irreversible. Once a seed stalk starts for form, nothing can be done to force the plant to produce a normal crop. (WU)
ORNAMENTALS

Cut Back Ornamental Grasses

Now is a good time to remove dead foliage from ornamental grasses. Grasses green up earlier if foliage is removed and are more attractive without a mixture of dead and live leaves. A number of tools can be used including hand clippers, weed whips (if the foliage is of a small enough diameter), weed whips with a circular blade, or even a chain saw. Use the top of the chainsaw bar to cut so the saw doesn’t pull in debris and clog. Also, it is often helpful to tie foliage together before cutting so it doesn't interfere and is easier to dispose of.

Burning is another option — but only if it is safe and legal to do so. Note that these grasses may not burn long, but they burn extremely hot. Even so, the crown of the plant is not damaged and new growth appears relatively quickly.

If the center of the clump shows little growth, the plant would benefit from division. Dig up the entire clump and separate. Then replant the vigorous growth found on the outer edge of the clump. (WU)

TURFGRASS

Core Aeration of Cool-Season Lawns

If you are planning to core-aerate your tall fescue or Kentucky bluegrass lawn this spring, reserve a machine now so you can get the job done in March or early-April. Coring early in the spring gives cool-season lawns a chance to recover before crabgrass and other warm-season annual weeds start to germinate.

Core-aerating is one of the best things you can do for your lawn. It relieves compaction, hastens thatch decomposition, increases water infiltration and helps promote better root growth. Pay attention to the soil moisture level when coring. The soil should easily crumble when worked between the fingers. If it is too wet, the machine's tines will plug and it will merely punch holes in the wet soil, which increases compaction. If it is too dry, the tines will not be able to penetrate very deeply. (WU)
MISCELLANEOUS

Compost Turning

The cold, wet winter may have caused compost to cool and develop frozen areas. Turning the compost pile now may be in order so that all materials are well mixed. This will prepare the compost for use this spring. (WU)

Iron Chlorosis and Calcareous Soils

Iron chlorosis due to high pH soils is a significant problem in mid- to western Kansas. Though Kansas soils normally contain adequate amounts of iron, a high pH makes that iron unavailable to the plant. Iron plays a major role in the production of chlorophyll. Thus, a lack of iron reduces the amount of chlorophyll and results in yellowing of leaves. Iron chlorosis weakens, and in severe cases, may kill a susceptible plant. A soil test is needed to determine the pH of your soil. See http://tinyurl.com/yfdgpwv for information on taking a soil test.

A popular recommendation for high pH soils is adding sulfur to reduce pH. This works well for many soils. But some soils are calcareous. Calcareous soils are those that contain actual particles of calcium carbonate (limestone). Calcareous soils can be difficult to practically impossible to acidify because the sulfur must neutralize all the free limestone before the pH is affected. In many cases you would need well over a pound of sulfur per square foot just to neutralize the free lime. To tell if your soil is calcareous, add a drop of vinegar to dry soil. If you see or hear it fizz, then you have a calcareous soil and changing the pH over the long-term will be practically impossible.

So what do you do if you have a calcareous soil? That depends on the situation. In vegetable gardens and annual flowerbeds, products can be worked into the soil when there are no plants present. Oregon State University suggests mixing 5 pounds of sulfur per 100 square feet into the soil before planting. The idea is to form little pockets of acidity so that enough iron is available for the plants during the year of application. Note that this must be done each year. Another
possibility is to use iron chelates. Iron chelates hold the iron in such a way that the plant can get to it. However, not all iron chelates will work in high pH soils. For soils with a pH above 7.2, use a chelate that contains FeEDDHA (iron ethylenediamine-di-(ohydroxyphenylacetate). This can be found in the products Sequestar 6% Iron Chelate WDG, Sequestrene 138 and Millers FerriPlus. Chelates can either be mixed into the soil at planting or sprayed on the foliage early in the season. Reapply as needed. (WU)

Contributors:
Ward Upham, Extension Associate

To view Upcoming Events: http://tinyurl.com/fswqe

Horticulture 2010 E-mail Subscription

For questions or further information contact: Hort WebMeister.

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned.

“Knowledge for Life”
Kansas State University Agricultural Experiment Station and Cooperative Extension Service