FRUIT

Watering Fruit Plants

Though many areas in Kansas have adequate amounts of rainfall, others have had too much or too little. Even areas that are wet now may dry out later in the season. When temperatures exceed 90 degrees F, fruit plants lose water quickly. When this happens, moisture is withdrawn from the fruit to supply the tree. Stress from high temperatures, along with a moisture deficit in the root environment, may cause fruit to drop or fail to increase in size.

The stress may also reduce the development of fruit buds for next year's fruit crop. If you have fruit plants such as trees, vines, canes, and such, check soil moisture at the roots. Insert a spade or shovel or a pointed metal or wood probe -- a long screwdriver works well for this. Shove these into the soil about 8 to 12 inches. If the soil is hard, dry, and difficult to penetrate, the moisture level is very low, and plants should be irrigated to prevent drooping and promote fruit enlargement.

Water can be added to the soil using sprinklers, soaker hose, drip irrigation, or even a small trickle of water running from the hose for a few hours. The amount of time you irrigate should depend upon the size of plants and the volume of water you are applying. Add enough moisture so you can easily penetrate the soil in the root area of the plant with a shovel, spade, or probe. When hot, dry weather continues, continue to check soil moisture at least once a week.

Strawberries have a shallow root system and may need to be watered more often maybe twice a week during extreme weather. Also, newly planted fruit trees sited on sandy soils may also need water twice a week. (WU)

Black Rot on Grapes

We are seeing a very common disease on grapes known as black rot. At first it appears as a brown area on the fruit but eventually the fruit will shrivel and turn black so that it resembles a raisin. These shriveled berries remain in the cluster so that you often have a mix of green and brown to black berries.

Spraying now will not control infections that have already taken place. Control should start when the shoots begin to emerge from the vine as this disease can also affect the leaves. Spray about every 10 to 14 days (use 10 days during wet weather) and use the homeowner available product Immunox. Avoid Immunox Plus as it is not labeled for fruit. Captan, the common fungicide found in fruit tree sprays, is relatively ineffective on this disease. Commercial producers have a much broader range of recommended materials including Abound, Adament, Bayleton, Elite, Flint, Mancozeb, Pristine, Rally, Sovran, and Ziram. The infection period for black rot usually ends by veraison (grapes begin to color) but you may need to control other diseases such as powdery mildew. You can find a grape spray schedule at http://www.oznet.ksu.edu/library/hort2/c592.pdf (WU)
VEGETABLES

Harvesting Potatoes

Potatoes are ready to harvest when the vines are about half dead. Potatoes dug too early have tender skins and are easily bruised. Delaying digging will allow the soil to heat since it is no longer shaded by foliage. High soil temperatures can lead to sprouting potatoes. Allow potatoes to "set" by keeping them in a shady, dry location for a day or so. Move them to a cool, moist environment such as a cellar or cool basement for longer storage. (WU)

Pulling Onions

Onions are ready to harvest when about half the plants have tops that have fallen over. This is a sign that the onions are mature and need to be pulled out of the ground as bulbs may sunburn without the foliage to protect them. The secret to onions keeping well is to allow the tops to dry completely before storage. Move onions to a shaded, well-ventilated area after harvest. After tops are completely dry, store in a cool, dry location. Large-necked onions take more time to dry than small-necked onions such as Bermuda types. Avoid storage in plastic bags because the lack of air circulation will shorten storage life. Use an open, mesh bag instead. (WU)

TURFGRASS

Bermudagrass Control

Bermudagrass can make a nice lawn if you don't mind its invasiveness and short growing season. But many people dislike both these characteristics. Warm-season grasses such as bermudagrass, zoysiagrass and buffalograss green up later than cool-season grasses such as tall fescue and Kentucky bluegrass. They also go dormant earlier in the fall, which can make a lawn unattractive. Bermuda that invades a cool-season lawn will be brown during much of the spring and fall while the rest of the lawn is green. And it is much more drought and heat resistant than cool-season grasses, so it will take over a cool-season lawn during the summer months if it is in full sun. So how do you control bermuda that has invaded a cool-season lawn? Research conducted in 1996 showed that glyphosate (Round-up, Kleen-up, Killzall, Kleeraway) is the best herbicide for the job. Note that glyphosate is a non-selective herbicide and will kill everything—including tall fescue or Kentucky bluegrass. You will need to reseed treated areas.

In our study, we applied a 2% solution of glyphosate on July 15 and again on August 15 on a bermudagrass plot that was more than 15 years old. Over one year later, we saw no regrowth. Glyphosate works best if the Bermuda is growing well. The better the bermuda is growing, the
more chemical is taken up and pushed into the roots. Water and fertilize if needed to get it going.

Spray about the middle of this month (or when the bermuda is growing well) and again about a month later if there is any green left in the Bermuda. Use glyphosate (2% solution). Wait two more weeks and reseed. It may also be helpful to scalp (mow as low as possible and remove clippings) the lawn two weeks after the first application so that dead grass does not prevent the glyphosate from reaching the recovering bermuda. (WU)

Contributors:
Ward Upham, Extension Associate

To view Upcoming Events: http://tinyurl.com/fswqe

Horticulture 2010 E-mail Subscription

For questions or further information contact: Hort WebMeister.

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned.

“Knowledge for Life”
Kansas State University Agricultural Experiment Station and Cooperative Extension Service