“How-To” Videos Added to Horticulture Information Center Website

Check out a new link that has been added to our Horticulture Information Center web page at http://www.hfrr.ksu.edu/DesktopDefault.aspx?tabid=583

It is titled “How-To’ Videos” and is linked to over 85 short videos posted on YouTube featuring a variety of K-State Research and Extension personnel giving advice on a wide range of topics. Videos are listed alphabetically as well as by subject (flowers, fruit, landscaping, lawns, tools & skills, trees & shrubs, vegetables & herbs and wildlife) and season (spring, summer, fall, winter or year-round). Many thanks to Deb Pryor and Steve Ballou with the Department of Communications for doing the filming, sound, editing and posting of virtually all the videos. New videos are added regularly, so check back often. (WU)

VEGETABLES

Storing Potatoes in Cold Temperatures

Potatoes stored below 40 degrees F will not sprout and will remain firm for long periods. However, such storage will often lead to starches being converted to sugars, which will give tubers an undesirable sweet taste. Placing potatoes at room temperature for 2 to 3 days will allow sugars to be converted back to starches and remove the objectionable taste. (WU)
Poor Drainage in Garden Areas

Winter is often a good time to fix areas in the garden where water sits and does not drain properly. Such areas often harm plant roots due to poor oxygen levels in the soil. Consider adding good topsoil so water doesn’t sit. Be sure to till or spade the area to mix the new topsoil and the underlying existing soil. Plant roots do not like to cross distinct barriers caused by one type of soil sitting on top of another.

Internal drainage can be improved by adding organic matter such as peat moss or compost. This can be done by adding a 2- to 4-inch layer of organic matter to the surface of the soil and tilling or spading in as deeply as possible. (WU)

FRUIT

Mouse Damage to Fruit Trees/Plants

Be on the lookout for mouse tunnels around your fruit plants. Trunks and roots of apple trees are among the favorite meals for mice. There is probably no damage yet. But if we receive enough snow to cover winter food supplies, mice may begin to feed on the lower area of tree trunks and roots. This feeding may be severe enough to girdle tree trunks and kill the trees.

Mice like to hide in dead grass and weeds around the trees, especially close to the trunks. They will often tunnel near the soil surface and feed on the tree bark. You can check for mice by placing baited mouse traps in PVC or other pipe near your trees. Insert the traps far enough so that pets are unable to reach the trap. Check the stations about once a week and reset the traps if necessary. Mouse damage can be severe enough to kill trees.

Clear dead grass and weeds away from your trees and monitor for mice if you are using a mulch around your fruit plants. (WU)
ORNAMENTALS

Controlling Volunteer Trees

Though trees are a vital part of our landscapes, there are situations where volunteer trees need to be controlled. This is often a case of the wrong plant in the wrong place. If the tree is a desirable species, you may want to consider transplanting in the spring. If it is not, active control measures would be in order.

Most trees resprout after cutting though some don’t. Cutting those that don’t resprout is an effective control method. For example, eastern redbud is a very common species that will not resprout after cutting. Those that do resprout include Siberian elm, hackberry, osage orange (hedgeball), oak, ash, aspen, cottonwood, maple, sycamore, willow and many more. These trees will either need to be dug out or the cut stump treated with herbicide after cutting.

Note that when we say volunteer trees, we mean those that come from seed rather than suckers that come from the roots of an existing tree. The recommendations given in the remainder of this article are designed to kill these volunteer trees. Using herbicides on suckers will damage and very possibly kill the original tree. Trees that commonly produce suckers include tree of heaven, honeylocust, black locust, hackberry, western soapberry, cottonwood, aspen, poplar, willow and boxelder. It is also possible for larger trees of the same species to be root-grafted. Even though root-grafted trees are not suckers, they do share materials between the individual root systems and therefore herbicides used to treat one tree can be passed to its neighbor.

So let’s say we have a tree we want to control that is a volunteer and there are no other trees of the same species close enough to be root-grafted that we do not wish to harm. What do we do? If the tree is any size, you probably do not want to dig it out. That leaves using a herbicide on the cut stump. Basal treatments are also possible but that is beyond the scope of this article. First decide what herbicide to use. Triclopyr and glyphosate are the herbicides most commonly available to homeowners. Triclopyr is found in many brush killers and glyphosate is found in Roundup as well as numerous other products. Read the label before purchasing to make sure that a cut stump treatment is listed. Most often the undiluted product is applied to the stump immediately after cutting. A paint brush is often used for the application though some people will dip their pruning shears in the products immediately before cutting. Regardless, it is important that the stump is treated immediately or at least within 5 minutes. Trees do not need to be actively growing to be controlled. Actually this time of year is a very good time to treat as long as applications are not made when the temperature is below freezing. (WU)
MISCELLANEOUS

Ice Melters

There are five main materials that are used as chemical de-icers: calcium chloride, sodium chloride (table salt), potassium chloride, urea, and calcium magnesium acetate. Calcium chloride is the traditional ice-melting product. Though it will melt ice to about -25 degrees F, it will form slippery, slimy surfaces on concrete and other hard surfaces. Plants are not likely to be harmed unless excessive amounts are used.

Rock salt is sodium chloride and is the least expensive material available. It is effective to approximately 12 degrees F but can damage soils, plants and metals. Potassium chloride can also cause serious plant injury when washed or splashed on foliage. Both calcium chloride and potassium chloride can damage roots of plants. Urea (carbonyl diamide) is a fertilizer that is sometimes used to melt ice. Though it is only about 10% as corrosive as sodium chloride, it can contaminate ground and surface water with nitrates. Urea is effective to about 21 degrees F.

Calcium magnesium acetate (CMA), a newer product, is made from dolomitic limestone and acetic acid (the principal compound of vinegar). CMA works differently than the other materials in that it does not form a brine like salt but rather helps prevent snow particles from sticking to each other or the road surface. It has little effect on plant growth or concrete surfaces. Performance decreases below 20 degrees F.

Limited use of any of these products should cause little injury. Problems accumulate when they are used excessively and there is not adequate rainfall to wash or leach the material from the area. Since limited use is recommended it is best to remove the ice and snow by hand when possible. When they are applied, practice moderation. Resist the temptation to over apply just to make sure the ice and snow melts. Keep in mind this can damage concrete surfaces as well as the plants and grass growing along the walks and driveways. These problems are normally latent and do not show up until spring or summer. (WU)

Compost Pile Maintenance

Compost piles should be turned about once per month even during the winter months. This will insure the composting process continues and that all materials are equally composted. A compost pile is “turned” when uncomposted material is moved from the sides and tops of the pile to the center where it provides “fuel” for the microorganisms that break it down. Water may
need to be added if the material you move to the center is dry. Check the moisture content by squeezing a fistful in your hand. It should feel moist but no excess water should drip out. Compress the material as best you can as excess air can slow the composting process. (WU)

Contributors:
Ward Upham, Extension Associate

To view Upcoming Events: http://tinyurl.com/fswqe

Horticulture 2010 E-mail Subscription

For questions or further information contact: [Hort WebMeister](mailto:HortWebMeister).

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned.

“**Knowledge for Life**”

Kansas State University Agricultural Experiment Station and Cooperative Extension Service