September is almost here and that means it is prime time to fertilize tall fescue or Kentucky bluegrass lawns. If you could only fertilize cool-season grasses once a year, this would be the best time to do it.

These grasses are entering their fall growth cycle as days shorten and temperatures moderate (especially at night). Cool-season grasses naturally thicken up in the fall by tillering (forming new shoots at the base of existing plants) and, for bluegrass, spreading by underground stems called rhizomes. Consequently, September is the most important time to fertilize these grasses. Apply 1 to 1.5 pounds of actual nitrogen per 1,000 square feet. The settings recommended on lawn fertilizer bags usually result in about 1 pound of nitrogen per 1,000 square feet. We recommend a quick-release source of nitrogen or a combination of quick- and slow-release nitrogen sources at this time. Most fertilizers sold in garden centers and department stores contain either quick-release nitrogen or a mixture of quick- and slow-release. Any of these should be fine to use at this time of year.

The second most important fertilization of cool-season grasses also occurs during the fall. A November fertilizer application will help the grass green up earlier next spring and provide the nutrients needed until summer. It should be quick-release applied at the rate of 1-pound actual nitrogen per 1,000 square feet. (WU)
Power Raking and Core-Aeration

September is the optimum time to power rake or core-aerate tall fescue and Kentucky bluegrass lawns. These grasses should be coming out of their summer doldrums and beginning to grow more vigorously. This is a good time to consider what we are trying to accomplish with these practices.

Power raking is primarily a thatch control operation. It can be excessively damaging to the turf if not done carefully. For lawns with one-half inch of thatch or less, I don't recommend power raking. For those who are unsure what thatch is, it is a springy layer of light-brown organic matter that resembles peat moss and is located above the soil but below the grass foliage.

Core-aeration is a much better practice for most lawns. By removing cores of soil, core-aeration relieves compaction, hastens thatch decomposition, and improves water, nutrient, and oxygen movement into the soil profile. This operation should be performed when the soil is just moist enough so that it crumbles easily when worked between the fingers. Enough passes should be made so that the holes are spaced about 2 to 3 inches apart. Ideally, the holes should penetrate 2.5 to 3 inches deep. The cores can be left on the lawn to decompose naturally (a process that usually takes two or three weeks, depending on soil-type), or they can be broken up with a vertical mower set just low enough to nick the cores, and then dragged with a section of chain-link fence or a steel doormat. The intermingling of soil and thatch is beneficial to the lawn. (WU)

Grub Damage on Lawns

If your lawn has large dead patches, check to be sure that the damage has not been caused by grubs. This is easily done by pulling up handfuls of dead turf. If the turf comes up like a carpet, then you have grubs. Treatments this late in the season are best done with trichlorfon (Dylox, Bayer 24-hr Grub Control). Products that contain imidacloprid (Bayer's Season-Long Grub Control and Grub-Ex) and halofenozide (Kill-a-Grub) are better applied earlier in the season as grub preventers. It is important that this product be watered in immediately after application. Waiting as little as 24 hours can reduce effectiveness to the point that grubs are not controlled. Apply 1/4 inch of water to insure the insecticide reaches the grubs. (WU)
FRUIT

Small Peaches

Late frosts that kill peach flowers are common in Kansas. Many areas will not have a full peach crop except for about one in every seven (or more) years. This year has been exceptional, with full fruit crops and excellent peach-growing weather in most areas. However, we have been receiving reports of trees with small peaches. Though small fruit could be due to poor weather (rare this year) or heavy fruit crops (common), there is a third possibility that is often overlooked. That possibility occurs when the top portion of the peach dies and the rootstock puts up new growth.

Peaches, like other fruit plants, must be vegetatively propagated. In other words, you cannot grow fruit from seed and expect the progeny to share the same characteristics as the parent. Therefore, good fruit trees have a top portion called the scion (the good fruiting part) and a bottom portion known as the rootstock. This combination is made by grafting or budding the scion onto the rootstock. Virtually everything above ground will be the scion and everything below ground will be the rootstock. The rootstock may keep the tree smaller, be more disease resistant than the scion, delay bloom or give some other good characteristic to the tree. However, the rootstock normally does not produce good, high quality fruit. Therefore, if the scion dies and the rootstock throws up new growth, the fruit produced will most likely be of poor quality.

So how do you tell if the small fruit is due to a rootstock taking over? If the fruit produced is always poor quality, then suspect the rootstock problem. If this is the case, there is no remedy. The tree will not produce good quality fruit regardless of the care given. It would be best to remove and replace the tree. (WU)

ORNAMENTALS

Are Crabapples Safe to Eat?

The short answer is "yes" as long as you don't eat too many of them. Actually, the only difference between crabapples and apples is the size of the fruit. By definition, crabapples have fruit that are 2 inches or less in diameter and apples are more than 2 inches in diameter. By this definition, most of the apples grown from seed will be crabapples. The fruiting apples are grafted. So did people ever plant crabapples from seed? Of course they did.
Just think of Johnny Appleseed. However, those apples were normally used for jelly, applesauce and cider and not for fresh eating.

However, there is one other caveat with using crabapples from a tree in the landscape. Make sure the tree hasn't been sprayed as an ornamental with a pesticide that isn't labeled for fruit tree apples. If it has, then the fruit should not be used. (WU)

PESTS

Magnolia Scale

Although there are many different types of scale pests that feed on trees and shrubs during the summer, now is the time to be aware of and deal with crawler stages of the magnolia scale, Neolecanium cornuparvum, which are actively moving about looking for a place to settle down and feed. Magnolia scale is the largest scale insect in the United States and feeds on both star and saucer magnolia. Crawlers are primarily located on the undersides of 1 to 2 year old twig growth. They eventually produce a powdery, waxy, white covering over their bodies. Magnolia scale overwinters as a first-instar crawler or nymph, with one generation per year in Kansas.
Magnolia scale females are 1/2-inch long and red-brown in color. They are initially covered with a white, waxy powder. During August and September, females deposit eggs, which hatch into crawlers/nymphs that are oval in shape and gray to red in color with a ridge extending down the back. Magnolia scale is a soft scale and produces copious amounts of honeydew, which may result in shiny, sticky leaves, as well as sticky sidewalks and vehicles (e.g., cars and trucks) located underneath infested trees. The crawler or nymphal stage is very susceptible to applications of insecticides including acephate (Orthene), potassium salts of fatty acids (Insecticidal Soap), petroleum oils (horticultural or summer oils), malathion, and pyrethroid-based insecticides (e.g., bifenthrin, cyfluthrin, and lambda-cyhalothrin). All plant parts must be thoroughly covered with the spray solution. Since magnolia scale is a soft scale, soil applications of imidacloprid (e.g. Merit and many generics) may be effective if applied early enough.

Although insecticides are effective against magnolia scale—especially the crawlers or nymphs—the primary means of dealing with magnolia scale is by promoting plant health through proper watering, fertility, mulching, and pruning practices. These practices may decrease susceptibility or limit the amount of injury when plants are infested with low to moderate populations of magnolia scale. Another option, if feasible, is to use a forceful water spray to physically remove magnolia scales from infested plants. This method removes all the life stages...quickly. There are a number of natural enemies including ladybird beetles that feed on magnolia scales; however, they are usually not abundant enough to provide adequate suppression/regulation of magnolia scale populations. During a recent trip to Maine, one of the
highlights was I found a saucer magnolia that was “literally covered” with magnolia scales…I was in “entomological heaven.” (RC)

Contributors:
Ward Upham, Extension Associate; Ray Cloyd, Entomologist

To view Upcoming Events: http://tinyurl.com/fswqe

Horticulture 2010 E-mail Subscription

For questions or further information contact: Hort WebMeister.

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned.

“Knowledge for Life”
Kansas State University Agricultural Experiment Station and Cooperative Extension Service