Problem: Budworm, Geranium (*Helicoverpa virescens*)

Hosts: Petunia, Geranium, Roses, Tobacco, others

Description: The larva of this insect damages the buds by boring into them before they open. The caterpillars feed on the flowers for about a month and then drop to the soil to pupate. There are normally two generations per year, with the second causing the most harm. The striped caterpillars vary widely in color with green, red, light brown and dark forms possible. The color of the larva is related to the color of the flowers on which they feed. The adult of this insect is a moth.

Damaged buds often fail to open. Those that do will show evidence of feeding on the petals. Damage normally peaks in late summer because of increased numbers from the second generation.

Recommendations: Control of the budworm is difficult. Handpicking at dusk can be effective on small plantings. For larger plantings, chemical control may be the only practical option. Look for products with synthetic pyrethroid active ingredients such as permethrin (Hi-Yield 38 Plus Turf, Termite & Ornamental Insect Spray; Bonide Eight Vegetable, Fruit & Flower Concentrate; Bonide Eight Yard & Garden RTS and Hi-Yield Garden and Farm Insect Control), esfenvalerate (Asana, Monterey Bug Buster II), cyfluthrin (BioAdvanced Vegetable & Garden Insect Spray), bifenthrin (Ortho Insect Killer for Lawn & Landscape) or gamma-cyhalothrin (Spectracide Triazicide). Products with spinosad (Captain Jack's Dead Bug Brew, Monterey Garden Insect Spray, Natural Guard Spinosad) should also be effective.

Severe winters can be a natural form of control from one year to the next. Temperatures below 20 degrees F are hard enough to kill overwintering pupa. Because pupal cases are usually 2 to 6 inches deep, most exposed areas in Kansas will provide good control during a cold winter. However, microclimates next to heated buildings may allow survival.

References:
1. Tobacco (Geranium) Budworm, Fact Sheet No. 5.581, Colorado State University

Last Update: 1/6/2022

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned.
“Knowledge for Life”
Kansas State University Agricultural Experiment Station and Cooperative Extension Service