Video of the Week: Making Your Own Seed Tape

FLOWERS

Fertilizing Perennial Flowers

Most flowering perennials are not heavy feeders, and once established, may not need fertilizing every year. However, a soil test or visual symptoms will help determine plant needs. Weak plants with light green to yellowish foliage will probably benefit from a nitrogen-containing fertilizer. Fertilizer should be applied as growth begins in the spring. Perennials that tend to need more fertilizer than the average perennial include astilbe, chrysanthemum, delphinium, lupines and summer phlox. (Ward Upham)

VEGETABLES

Frost Proof Vegetable Plants

Certain vegetables can withstand cold spring temperatures as long as they have been toughened up by gradually exposing them to sunlight and outdoor temperatures. This “hardening off” process usually takes about a week. Reducing watering and temperature is the key to toughening up transplants. If possible, move transplants outside for a portion of each day. Start by placing them in a shady, protected location and gradually move them into a more exposed, sunny location as the week progresses. Hardened off cabbage, broccoli, cauliflower and onions can withstand temperatures near 20 F without being killed. Lettuce plants are not quite as tough but will be OK if exposed to temperatures in the mid 20s. Don’t hesitate to put these plants out now if extreme cold is not forecast. (Ward Upham)
Rhubarb

Rhubarb is a perennial vegetable that can be a bit tricky to grow in Kansas. It is native to northern Asia (possibly Siberia) and so is adapted to cold winters and dry summers. However, it is susceptible to crown rot and should not be subjected to “wet feet” and so should be grown in a well-drained soil. The addition of organic matter can increase drainage as well as raise the soil level so that crown rot is less likely. Also, have a soil test done as rhubarb does best with a pH below 7.0.

Rhubarb should be planted from mid-March to early April in Kansas. Mix 5 to 10 pounds of well-rotted barnyard manure into the soil for each 10 square feet of bed before planting. Rhubarb is propagated from crowns (root sections) that contain one or two buds. Plants should be spaced 2 to 3 feet apart in the row with 4 to 5 feet between rows. The crowns are planted shallow so that the buds are just one-half to 1 inch below the soil surface. Firm soil around the crowns and make sure they are not in a depression that holds water. Recommended varieties include Canada Red, Crimson Red, McDonald and Valentine.

Rhubarb needs rejuvenated at least every 5 to 10 years and should be dug and divided in the same time period as new plantings are established. Use a cleaver or axe to cut crowns into sections that each contain one or two buds. Plant as described above.

Newly transplanted rhubarb should not be harvested the first year so the plant can recover from the transplant process. Only a few stalks should be harvested the second year to allow the plant to continue to build up its energy reserves. The harvest season for plants that are three years or older usually lasts about 8 weeks. Harvest only the largest and best stalks by pulling them slightly to the side so that they break away from the plant. Never harvest over one-third of the leaf stalks at one time. Only the leaf stalk (petiole) is eaten as the leaf blade contains oxalic acid and is poisonous.

Mulches can be used to reduce moisture loss, prevent weed growth and provide winter protection. However, it should be pulled away in the spring to allow the soil to warm so that early growth is encouraged. (Ward Upham)

FRUIT

Pruning Raspberries and Blackberries

Raspberries and blackberries are perennial plants with biennial canes. In other words, a single plant will last many years but an individual cane will only live for two. In a cane’s first year, it will grow but will not produce fruit. The second
year, it will fruit and then die. Though these canes can be removed after they have finished
fruited, many gardeners wait until now to remove them.

Dead canes are not difficult to identify. They are a much lighter color than live canes and are
dry and brittle. These canes should be removed and discarded. The remaining canes should be
thinned but the type of growth determines exactly how this should be done.

Black and purple raspberries and thornless blackberries tend to grow in a clump. Remove all the
canes but 5 to 7 of the largest and healthiest in each clump. Cut back the remaining canes to
living tissue if there was winter damage. Thornless blackberries will also produce a few suckers
that come up some distance from the clump. These should be removed or dug and transplanted
to increase the planting.

Red raspberries and thorny blackberries sucker badly and will fill the row with new plants.
Prune out small canes within the row so that there are strong canes 4 to 6 inches apart. Head
back all the remaining canes to about 5 feet. Keep aisles free of new suckers during the summer
by mowing.

We now have what are called everbearing red raspberries and thorny blackberries. These are the
exception to the rule in that they will bear fruit on first-year canes. Therefore, you can cut all
canes to the ground in the winter and still have fruit. Examples include Heritage red raspberry
and Prime-Jim or Prime-Jan blackberry.

For more detail and line-drawings that illustrate pruning techniques, see our publication titled,
Upham)

TURFGRASS

Managing Turf in Shade

Turfgrasses differ in their capacity to grow in shade. Among Kansas turfgrasses, tall fescue is the
best adapted to shade but isn’t all that good. Although the fine fescues (i.e., creeping red,
chewings, hard and sheep) have better shade tolerance, they lack heat tolerance and typically
decline during hot Kansas summers. The warm-season grasses have the poorest shade
tolerance, although zoysia does better than bermuda and buffalo.

Where shade is too heavy for fescue, there are other courses of action. The most obvious is to
either remove trees, or to prune limbs and thin the tree canopies. Grass will do better under
openly spaced trees than under closely spaced trees. Pruned limbs and thinned canopies will
allow more sunlight to directly reach the turfgrass.
If possible, raise the mowing height in the shade to compensate for the more upright growth of the leaves, and to provide more leaf area for photosynthesis. The thin, weak turf in the shade may tempt you to fertilize more. Remember the problem is lack of light, not lack of fertility. Too much nitrogen in the spring causes the plant to grow faster and may result in weak plants. The nitrogen rate for shaded grass should be cut back to at least half of that for grass in full sun. Late fall fertilization after tree leaves have fallen, on the other hand, is important for shaded cool-season turfgrasses and should be applied at a full rate. Irrigate infrequently but deeply. Light, frequent irrigation may encourage tree feeder-roots to stay near the surface, which increases competition between the trees and the turf. Restrict traffic in the shade.

Many times, the best choice for shaded areas is switch from a turfgrass to a more shade-tolerant plant. For example, English ivy and periwinkle (Vinca minor) are much more shade tolerant than any turfgrass adapted to our area. Another option is simply to mulch the area where turf doesn’t grow well. The trees will love the cool, moist soil and the absence of competition. (Ward Upham)

MISCELLANEOUS

Wild Garlic, Wild Onion and Star-of-Bethlehem

Wild garlic (Allium vineale) and wild onion (Allium canadense) are two closely related plants that can become weed problems in home lawns and landscapes. Though wild garlic and wild onion look much alike, each has an odor that is characterized by its name – wild garlic smells like garlic and wild onion smells like onion. These plants are perennials that can also reproduce by seeds and aerial bulbils. Bulbils form at the top of the stem and are oval and smooth. Wild garlic also reproduces by underground bulb offsets, but wild onion does not. Both species produce a clump of plants that is unsightly in a lawn. Control recommendations are the same though we now have a couple of new additions to our arsenal. Traditionally we have used 2,4-D or 2,4-D + MCPP + Dicamba (i.e., Trimec, Weed-Out, Weed-B-Gon). These products should be sprayed during March on a day that is at least 50 degrees. Newer products are Weed Free Zone and Speed Zone. Both are combination products that contain a formulation of Trimec plus carfentrazone. These may be used at temperatures below 50 degrees, lower than traditional products. A spreader-sticker added to the spray should help any of these products be more effective. At times, the spreader-sticker is already mixed into the weed killer; no additional amount is needed. These herbicides are also effective on dandelions.

Unfortunately, we have not had a good chemical control for Star-of-Bethlehem. The best products we had were Coolpower (31.3%) and Turflon Ester (23.8%). Coolpower is a commercial only product, but Turflon Ester is available to both commercial and homeowner users. But recent research out of Virginia Tech has improved our outlook. Scientists there did a study in which they gained 96% control of Star-of-Bethlehem one month after treatment by
using Quicksilver, a formulation of carfentrazone at the rate of 4 fl. oz/A. Quicksilver is a commercial only product, and therefore is not available to homeowners. However, both Speed Zone and Weed Free Zone contain carfentrazone and would certainly be worth a try if you have this troublesome plant. (Ward Upham)

Contributors: Ward Upham, Extension Associate

To view Upcoming Events: http://tinyurl.com/fswqe

The web version includes color images that illustrate subjects discussed. To subscribe to this newsletter electronically, send an e-mail message to cdipman@ksu.edu or wupham@ksu.edu listing your e-mail address in the message.

For questions or further information contact: wupham@ksu.edu

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned.

“Knowledge for Life”
Kansas State University Agricultural Experiment Station and Cooperative Extension Service